skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kallivayalil, Nitya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a novel method for systematically assessing the impact of the central potential fluctuations associated with bursty outflows on the structures of dark matter halos for classical and ultrafaint dwarf (UFD) galaxies. Specifically, we use dark-matter-only simulations augmented with a manually added massive particle that modifies the central potential and approximately accounts for a centrally concentrated baryonic component. This approach enables precise control over the magnitude, frequency, and timing of rapid outflow events. We demonstrate that this method can reproduce the established result of core formation for systems that undergo multiple episodes of bursty outflows. In contrast, we also find that equivalent models involving only single (or a small number of) burst episodes do not form cores with the same efficacy. This is important because many UFDs in the local Universe are observed to have tightly constrained star formation histories that are best described by a single early burst of star formation. Using a suite of cosmological zoom-in simulations, we identify the regimes in which single bursts can and cannot form a cored density profile. Our results suggest that it may be difficult to form cores in UFD-mass systems with a single early burst, regardless of its magnitude. 
    more » « less
    Free, publicly-accessible full text available December 3, 2026
  2. We present uniformly measured resolved stellar photometry and star formation histories (SFHs) for 36 nearby (≲400 kpc) ultra-faint dwarf galaxies (UFDs; −7.1 ≤MV≤ +0.0) from new and archival Hubble Space Telescope (HST) imaging. We measure homogeneous distances to all systems via isochrone fitting and find good agreement (≤2%) for the 18 UFDs that have literature RR Lyrae distances. From the ensemble of SFHs, we find (i) an average quenching time (here defined as the lookback time by which 80% of the stellar mass formed,τ80) of 12.48  ±  0.18 Gyr ago ( z = 4 . 6 0.5 + 0.6 ), which is compatible with reionization-based quenching scenarios; and (ii) modest evidence of a delay (≲800 Myr) in quenching times of UFDs thought to be satellites of the LMC or on their first infall, relative to long-term Galactic satellites, which is consistent with previous findings. We show that robust SFH measurement via the ancient main-sequence turnoff (MSTO) requires a minimum effective luminosity (i.e., luminosity within the observed field of view) ofMV≤ −2.5, which corresponds to ∼100 stars around the MSTO. We also find that increasing the signal-to-noise ratio above ∼100 at the MSTO does not improve SFH precision, which remains dominated by stochastic effects associated with the number of available stars. A main challenge driving the precision of UFD SFHs is the limitations in the accuracy of foreground dust maps. We make all photometry catalogs public as the first data release of a larger HST archival program targeting all dwarf galaxies within ∼1.3 Mpc. 
    more » « less
    Free, publicly-accessible full text available October 8, 2026
  3. Abstract We report the results of the deepest search to date for dwarf galaxies around NGC 3109, a barred spiral galaxy with a mass similar to that of the Small Magellanic Cloud (SMC), using a semiautomated search method. Using the Dark Energy Camera, we survey a region covering a projected distance of ∼70 kpc of NGC 3109 (D= 1.3 Mpc,Rvir∼ 90 kpc,M∼ 108M*) as part of the MADCASH and DELVE-DEEP programs. We introduce a newly developed semiresolved search method, used alongside a resolved search, to identify crowded dwarf galaxies around NGC 3109. Using both approaches, we successfully recover the known satellites Antlia and Antlia B. We identified a promising candidate, which was later confirmed to be a background dwarf through deep follow-up observations. Our detection limits are well defined, with the sample ∼80% complete down toMV∼ −8.0, and include detections of dwarf galaxies as faint asMV∼ −6.0. This is the first comprehensive study of a satellite system through resolved stars around an SMC mass host. Our results show that NGC 3109 has more bright (MV∼ −9.0) satellites than the mean predictions from cold dark matter models, but well within the host-to-host scatter. A larger sample of LMC/SMC-mass hosts is needed to test whether or not the observations are consistent with current model expectations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  4. Abstract We introduce the DaRk mattEr and Astrophysics with Machine learning and Simulations (DREAMS) project, an innovative approach to understanding the astrophysical implications of alternative dark matter (DM) models and their effects on galaxy formation and evolution. The DREAMS project will ultimately comprise thousands of cosmological hydrodynamic simulations that simultaneously vary over DM physics, astrophysics, and cosmology in modeling a range of systems—from galaxy clusters to ultra-faint satellites. Such extensive simulation suites can provide adequate training sets for machine-learning-based analyses. This paper introduces two new cosmological hydrodynamical suites of warm dark matter (WDM), each comprising 1024 simulations generated using thearepocode. One suite consists of uniform-box simulations covering a ( 25 h 1 Mpc ) 3 volume, while the other consists of Milky Way zoom-ins with sufficient resolution to capture the properties of classical satellites. For each simulation, the WDM particle mass is varied along with the initial density field and several parameters controlling the strength of baryonic feedback within the IllustrisTNG model. We provide two examples, separately utilizing emulators and convolutional neural networks, to demonstrate how such simulation suites can be used to disentangle the effects of DM and baryonic physics on galactic properties. The DREAMS project can be extended further to include different DM models, galaxy formation physics, and astrophysical targets. In this way, it will provide an unparalleled opportunity to characterize uncertainties on predictions for small-scale observables, leading to robust predictions for testing the particle physics nature of DM on these scales. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  5. Abstract We present deep Hubble Space Telescope photometry of 10 targets from Treasury Program GO-14734, including six confirmed ultrafaint dwarf (UFD) galaxies, three UFD candidates, and one likely globular cluster. Six of these targets are satellites of, or have interacted with, the Large Magellanic Cloud (LMC). We determine their structural parameters using a maximum-likelihood technique. Using our newly derived half-light radius (rh) andV-band magnitude (MV) values in addition to literature values for other UFDs, we find that UFDs associated with the LMC do not show any systematic differences from Milky Way UFDs in the magnitude–size plane. Additionally, we convert simulated UFD properties from the literature into theMV–rhobservational space to examine the abilities of current dark matter (DM) and baryonic simulations to reproduce observed UFDs. Some of these simulations adopt alternative DM models, thus allowing us to also explore whether theMV–rhplane could be used to constrain the nature of DM. We find no differences in the magnitude–size plane between UFDs simulated with cold, warm, and self-interacting DM, but note that the sample of UFDs simulated with alternative DM models is quite limited at present. As more deep, wide-field survey data become available, we will have further opportunities to discover and characterize these ultrafaint stellar systems and the greater low surface-brightness universe. 
    more » « less
  6. Abstract From >1000 orbits of HST imaging, we present deep homogeneous resolved star color–magnitude diagrams that reach the oldest main-sequence turnoff and uniformly measured star formation histories (SFHs) of 36 dwarf galaxies (−6 ≥MV≥ −17) associated with the M31 halo, and for 10 additional fields in M31, M33, and the Giant Stellar Stream. From our SFHs, we find: (i) The median stellar age and quenching epoch of M31 satellites correlate with galaxy luminosity and galactocentric distance. Satellite luminosity and present-day distance from M31 predict the satellite quenching epoch to within 1.8 Gyr at all epochs. This tight relationship highlights the fundamental connection between satellite halo mass, environmental history, and star formation duration. (ii) There is no difference between the median SFH of galaxies on and off the great plane of Andromeda satellites. (iii) ~50% of our M31 satellites show prominent ancient star formation (>12 Gyr ago) followed by delayed quenching (8–10 Gyr ago), which is not commonly observed among the MW satellites. (iv) A comparison with TNG50 and FIRE-2 simulated satellite dwarfs around M31-like hosts shows that some of these trends (dependence of SFH on satellite luminosity) are reproduced in the simulations while others (dependence of SFH on galactocentric distance, presence of the delayed-quenching population) are weaker or absent. We provide all photometric catalogs and SFHs as High-Level Science Products on MAST. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  7. Abstract We report the first comprehensive census of the satellite dwarf galaxies around NGC 55 (2.1 Mpc) as a part of the DECam Local Volume Exploration DEEP (DELVE-DEEP) survey. NGC 55 is one of four isolated, Magellanic analogs in the Local Volume around which DELVE-DEEP aims to identify faint dwarfs and other substructures. We employ two complementary detection methods: one targets fully resolved dwarf galaxies by identifying them as stellar overdensities, while the other focuses on semiresolved dwarf galaxies, detecting them through shredded unresolved light components. As shown through extensive tests with injected galaxies, our search is sensitive to candidates down toMV ≲ −6.6 and surface brightnessμ ≲ 28.5 mag arcsec2, and ∼80% complete down toMV ≲ −7.8. We do not report any new confirmed satellites beyond two previously known systems, ESO 294–010 and NGC 55-dw1. We construct the satellite luminosity function of NGC 55 and find it to be consistent with the predictions from cosmological simulations. As one of the first complete luminosity functions for a Magellanic analog, our results provide a glimpse of the constraints on low-mass-host satellite populations that will be further explored by upcoming surveys, such as the Vera C. Rubin Observatory’s Legacy Survey of Space and Time. 
    more » « less
  8. Abstract Low-mass galaxy pair fractions are understudied, and it is unclear whether low-mass pair fractions evolve in the same way as more massive systems over cosmic time. In the era of JWST, Roman, and Rubin, selecting galaxy pairs in a self-consistent way will be critical to connect observed pair fractions to cosmological merger rates across all mass scales and redshifts. Utilizing the Illustris TNG100 simulation, we create a sample of physically associated low-mass (108<M*< 5 × 109M) and high-mass (5 × 109<M*< 1011M) pairs betweenz= 0 and 4.2. The low-mass pair fraction increases fromz= 0 to 2.5, while the high-mass pair fraction peaks atz= 0 and is constant or slightly decreasing atz> 1. Atz= 0 the low-mass major (1:4 mass ratio) pair fraction is 4× lower than high-mass pairs, consistent with findings for cosmological merger rates. We show that separation limits that vary with the mass and redshift of the system, such as scaling by the virial radius of the host halo (rsep< 1Rvir), are critical for recovering pair fraction differences between low-mass and high-mass systems. Alternatively, static physical separation limits applied equivalently to all galaxy pairs do not recover the differences between low- and high-mass pair fractions, even up to separations of 300 kpc. Finally, we place isolated mass analogs of Local Group galaxy pairs, i.e., Milky Way (MW)–M31, MW–LMC, LMC–SMC, in a cosmological context, showing that isolated analogs of LMC–SMC-mass pairs and low-separation (<50 kpc) MW–LMC-mass pairs are 2–3× more common atz≳ 2–3. 
    more » « less
  9. ABSTRACT The Magellanic Cloud system represents a unique laboratory for study of both interacting dwarf galaxies and the ongoing process of the formation of the Milky Way and its halo. We focus on one aspect of this complex, three-body interaction – the dynamical perturbation of the Small Magellanic Cloud (SMC) by the Large Magellanic Cloud (LMC), and specifically potential tidal effects on the SMC’s eastern side. Using Gaia astrometry and the precise radial velocities (RVs) and multielement chemical abundances from Apache Point Observatory Galactic Evolution Experiment (APOGEE-2) Data Release 17, we explore the well-known distance bimodality on the eastern side of the SMC. Through estimated stellar distances, proper motions, and RVs, we characterize the kinematics of the two populations in the bimodality and compare their properties with those of SMC populations elsewhere. Moreover, while all regions explored by APOGEE seem to show a single chemical enrichment history, the metallicity distribution function (MDF), of the ‘far’ stars on the eastern periphery of the SMC is found to resemble that for the more metal-poor fields of the western periphery, whereas the MDF for the ‘near’ stars on the eastern periphery resembles that for stars in the SMC Centre. The closer eastern periphery stars also show RVs (corrected for SMC rotation and bulk motion) that are, on average, approaching us relative to all other SMC populations sampled. We interpret these trends as evidence that the near stars on the eastern side of the SMC represent material pulled out of the central SMC as part of its tidal interaction with the LMC. 
    more » « less
  10. Abstract We present analysis of the proper-motion (PM) field of the red clump stars in the Large Magellanic Cloud (LMC) disk using the Gaia Early Data Release 3 catalog. Using a kinematic model based on old stars with 3D velocity measurements, we construct the residual PM field by subtracting the center-of-mass motion and internal rotation motion components. The residual PM field reveals asymmetric patterns, including larger residual PMs in the southern disk. Comparisons of the observed residual PM field with those of five numerical simulations of an LMC analog that is subject to the tidal fields of the Milky Way and the Small Magellanic Cloud (SMC) show that the present-day LMC is not in dynamical equilibrium. We find that both the observed level of disk heating (PM residual rms of 0.057 ± 0.002 mas yr −1 ) and kinematic asymmetry are not reproduced by Milky Way tides or if the SMC impact parameter is larger than the size of the LMC disk. This measured level of disk heating provides a novel and important method to validate numerical simulations of the LMC–SMC interaction history. Our results alone put constraints on an impact parameter ≲10 kpc and impact timing <250 Myr. When adopting the impact timing constraint of ∼140–160 Myr ago from previous studies, our results suggest that the most recent SMC encounter must have occurred with an impact parameter of ∼5 kpc. We also find consistent radial trends in the kinematically and geometrically derived disk inclination and line-of-node position angles, indicating a common origin. 
    more » « less